RESCAN

NA MAGNIFICATION PINHOLE SIZE PIXEL SIZE

Quick Knowledge PART 4

The *RE*scan setup has three main parts

Optimum **size** of the **pinhole** (or slit)

NA of the objective

Size of the camera **pixels**

*RE***scan confocal microscopy**

All influence each other.

First of all: the Airy Disk

An emitter in the sample also produces an Airy Disk-shaped spot in the image.

The scanning laser beam produces a **spot** in the sample, which is shaped like an '**Airy Disk**'.

The diameter of the central peak of the spot is called one '**Airy Unit**', or **1 AU**, and it depends on the objective NA.

Objective: NA

The **NA** (numerical aperture) gives the largest **angle** in which the objective collects light.

$$
d_{spot} = 1.22 \cdot \frac{\lambda}{NA}
$$
 (Wavelength)
 (NA of objective)

smaller the spot.

(and the better the resolution) $\begin{bmatrix} d_{\text{eq}} \\ d_{\text{eq}} \end{bmatrix}$

Objective: Magnification

The **magnification** (M) of an objective indicates how much larger an object appears in the image compared to its actual size.

> FoV Image $M = \frac{E}{\text{FoV Sample}}$

Magnification can be defined in relation to the field of view (FoV):

The spot size in the image (1 AU) is also magnified:

$$
\frac{d}{\text{spot}} = 1.22 \cdot \frac{\lambda}{NA} \cdot M
$$

Pinhole size

An image of the spot is projected on the pinhole, circular or slit, via the optics of the *RE*scan unit.

The optimal trade-off between confocality and signal intensity without losing resolution in *RE*scan is achieved when the

 $d_{\text{t}} \approx 1.5 \cdot 1.22 \cdot \frac{N}{NTA} \cdot M \cdot M$ pinhole NA internal $\approx 1.5 \cdot 1.22 \cdot \frac{\lambda}{N}$ ΝΑ

pinhole size is **1.5** AU.

This formula applies for both circular and slit pinholes in **Point** *RE***scan** and **Line** *RE***scan**, respectively.

To obtain maximum resolution we need at least four **pixels** on the camera within 1 AU, according to the Nyquist theorem.

Camera pixels

d $\frac{\epsilon}{1} \leq \frac{1}{4}$ • 1.22 • $\frac{N}{NTA}$ • M • M pixel 4 ¹¹² NA ¹¹² spot $\leq \frac{1}{4}$ • 1.22 • $\frac{\lambda}{N}$ ΝΑ 1 4

The spot gets demagnified for super resolution imaging.

Nyquist sampling

Watching a VHS tape on a 4k monitor

Lost resolution

Perfect Nyquist 4 4 4 pixels within 1 AU sampling

Watching a 4k movie on a Gameboy

Undersampling

The choice of both the optimal pinhole size and the optimal pixel size depend on the objective:

Optimising your system

Make sure to take into account both M and NA for the correct choice!�

$$
d_{pixel} \leq \frac{1}{4} \cdot 1.22 \cdot \frac{\lambda}{NA!} \cdot \frac{\delta M}{M} M_{spot}
$$

Achieve the ideal ratio of objective NA & magnification, and camera pixel size with our Line and Point *RE*scan systems. You can select the optimal pinhole size and image with a wide range of objectives (4x-100x).

Find out more at

www.confocal.nl

