

FIELD OF VIEW IN RESCAN CONFOCAL MICROSCOPY

Field Of View in Confocal Microscopy

Field Of View (FOV) describes the area in the sample that a microscope can image. This area is also known as FOV_{sample}.

Additionally, FOV represents the portion of the object that fills the sensor of a detector (FOV_{detector}).

In standard confocal microscopy FOV_{sample} is usually equal to FOV_{detector} and is often expressed in **pixels**.

Field Of View in *RE*scan

In **RESCAN** confocal, after the first scan of the sample, the image is rescanned onto a camera which works as a detector.

Here, two issues arise if the FOV is expressed in pixels.

Issue 1: Pixel size varies

Different cameras might have pixel grids with the same number of pixels, but different pixel sizes.

12x12 px

 $2.6 \ \mu m \ per \ px$

12x12 px

4.6 µm per px

6.5 μm per px

Issue 2: FOVdetector ≠ FOVsample

In *RE*scan confocal, the size of the camera plane is not always identical to the FOV in the sample.

FOV can also be expressed as the F[°] (FN) in the image plane in mm.

The solution: FOV in units of length

The FOV_{sample} is the Field Number divided by the objective magnification (M).

$$FOV_{sample} = \frac{FN}{M}$$

FN	FOV in mm ²	Number of 6.5 µm pixels	Number of 4.6 µm pixels
12.5	8.9 x 8.9	1369 x 1369	1935 x 1935
18.8	13.3 x 13.3	2048 x 2048	2898 x 2898

22	15.6 x 15.6	2400 x 2400	3392 x 3392
25	17.7 x 17.7	2728 x 2728	3855 x 3855

Different *RE*scan systems handle FOV_{sample} in distinct ways. For example, this table applies to GAIA but not to RCM2.

REscan in RCM2

Scan on sample

In RCM2, the *RE*scan amplitude is larger than the scan amplitude, creating a super resolution image, yet limiting FOV_{sample}.

REscan on camera

Here, the image plane is limited to **FN12.5** even though the camera plane is **FN18.8**.

FOV in RCM2

Scan on sample

REscan on camera

An **89 μm** by **89 μm** surface on the sample plane is scanned, when a 100x objective is used.

This is rescanned onto 2048 by 2048 pixels on the camera with a pixel size of 6.5 µm.

REscan in GAIA

Scan on sample

Scan amplitude

REscan on camera

*RE*scan amplitude

In GAIA, scan and *RE*scan amplitude ar always identical, creating super resolution images by using the complete **FN 18.8** of the microscope.

The rescanned spot on the camera is smaller than the scanned spot on the sample.

FOV in GAIA

Scan on sample

REscan on camera

An **133 µm** by **133 µm** surface on the sample plane is scanned, when a 100x objective is used.

Find out more at www.confocal.nl

Point **RE**scan

Line **RE**scan

